
Fall 2020 MATH3060 HW3 Solution

TA: LEE, Yat Long Luca
Email: yllee@math.cuhk.edu.hk

Office: Room 711 AB1 (Temporary), Room 505 AB1 (Until further notice)
Office Hour: Send me an email first, then we will arrange a meeting (if you need it).
Remark: Please let me know if there are typos or mistakes.

Q1

Sketch the metric ball of radius 1 centered at 0 in R2 for the metric d1, d2 and d∞ on R2.

Solution:
Denote Bp(x, r) be the dp metric ball centered at x with radius r. Denote x = (x1, x2) ∈ R2.

• For B1(0, 1) := {x : d1(x, 0) ≤ 1} = {x : |x1|+ |x2| ≤ 1}

• For B∞(0, 1) := {x : d∞(x, 0) ≤ 1} = {x : max{|x1|, |x2|} ≤ 1}

• For B2(0, 1) := {x : d2(x, 0) ≤ 1} = {x :
!

x21 + x22 ≤ 1}

From left to right: B1(0, 1), B2(0, 1), and B∞(0, 1)

Source: Mathematical Mathematics Memes on Facebook by Markus Klyver.
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Q2

Show that for any α ∈ R, the set

{f ∈ C[a, b] : f(x) ≥ α, ∀x ∈ [a, b]}

is closed in (C[a, b], d∞).

Solution:
Denote A := {f ∈ C[a, b] : f(x) ≥ α, ∀x ∈ [a, b]}. To show that A is closed, we show that its

complement B := C[a, b]\A is open. Explicitly, B = {f ∈ C[a, b] : f(x) < α, for some x ∈ [a, b]}.
For any f ∈ B, we want to show that there exists a ball around f such that the ball is contained
inside B.

Take any f ∈ B, there exists x0 ∈ [a, b] such that f(x0) < α. By continuity of f , there exists
a point y ∈ [a, b] such that f(y) ≤ f(x) for all x ∈ [a, b]. Then, we have the relation

f(y) ≤ f(x0) < α

Let ε = α− f(x0) > 0. Consider B∞(f, ε) := {g ∈ C[a, b] : d∞(g, f) < ε}. We want to show
that for all g ∈ B∞(f, ε), we have g ∈ B. Now, take any g ∈ B∞(f, ε), we have

|g(x0)− f(x0)| ≤ max
x∈[a,b]

|g(x)− f(x)| < ε = α− f(x0)

.

• If g(x0)− f(x0) ≥ 0, then g(x0)− f(x0) < α− f(x0) =⇒ g(x0) < α.

• If g(x0)− f(x0) ≤ 0, then g(x0) ≤ f(x0) < α =⇒ g(x0) < α.

This shows g ∈ B. Thus B is open, equivalently, C[a, b] \B = A is closed.
!

Remark: A set that is not closed does NOT mean it is open. Some of you wanted to show Q2
by assuming A is open to get a contradiction. This is not true in a general topological space1.
One example is the discrete metric space, in which all sets are both open and closed. Moreover,
sets like [a, b) in R are not open and not closed. Do not confuse with the useful fact that com-
plement of open sets are closed, this does not imply not closed = open. You will definitely see
more strange topological spaces when you take MATH3070.

1metric spaces are topological spaces
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Q3

(a) Let l1 = {x = (x1, x2, ...) :
"∞

i=1 |xi| < ∞, xi ∈ R}. Show that d1(x, y) :=
"∞

i=1 |xi − yi| is
a metric on l1.

(b) Let l2 =
#
x = (x1, x2, ...) :

"∞
i=1 |xi|2 < ∞, xi ∈ R

$
. Show that d2(x, y) =

%"∞
i=1 |xi − yi|2

& 1
2

is a metric on l2.

(c) Let l∞ = {x = (x1, x2, ...) : supi |xi| < ∞, xi ∈ R}. Show that d∞(x, y) = supi |xi − yi| is
a metric on l∞.

(d) Show that the sets l1 ⊂ l2 ⊂ l∞.

Solution:
Recall the three axioms of metric:

(i) d(x, y) ≥ 0 for all x, y ∈ X. Moreover, d(x, y) = 0 ⇐⇒ x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

We will first check that the metric is well-defined, then check the three axioms.

(a) Since x, y ∈ l1, we have
"∞

i=1 |xi| < ∞ and
"∞

i=1 |yi| < ∞. Then

d1(x, y) =

∞'

i=1

|xi − yi| ≤
∞'

i=1

(|xi|+ |yi|) < ∞

thus it is well-defined. Then we check the three axioms.

(i) Since |xi − yi| ≥ 0 for all i, then d1(x, y) ≥ 0. Moreover, if xi = yi for all i, we must
have d1(x, y) = 0.

(ii) Since |xi − yi| = |yi − xi|, then d1(x, y) = d1(y, x).

(iii) For all x, y, z ∈ l1, we have |xi − yi| = |xi − zi + zi − yi| ≤ |xi − zi| + |zi − yi| since
the series converges, we have d1(x, y) ≤ d1(x, z) + d1(z, y).

Thus it is d1 is a metric on l1,

(b) Since x, y ∈ l2, we have
"∞

i=1 |xi|2 < ∞ and
"∞

i=1 |yi|2 < ∞. Then consider
∞'

i=1

|xi − yi|2 =
∞'

i=1

|x2i − 2xiyi + y2i | ≤
∞'

i=1

%
|xi|2 + 2|xiyi|+ |yi|2

&

by Cauchy-Schwarz’s inequality, we have

∞'

i=1

|xiyi| ≤

())*
∞'

i=1

|xi|2

())*
∞'

i=1

|yi|2

then

∞'

i=1

%
|xi|2 + 2|xiyi|+ |yi|2

&
≤

∞'

i=1

|xi|2 + 2

())*
∞'

i=1

|xi|2

())*
∞'

i=1

|yi|2 +
∞'

i=1

|yi|2
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and thus
∞'

i=1

|xi − yi|2 =

+

,

())*
∞'

i=1

|xi|2 +

())*
∞'

i=1

|yi|2
-

.
2

thus

d2(x, y) =

())*
∞'

i=1

|xi|2 +

())*
∞'

i=1

|yi|2 < ∞

i.e., it is well-defined. Then we check

(i) Since |xi − yi| ≥ 0 for all i, then d2(x, y) ≥ 0. Moreover, d2(x, y) = 0 if and only if
xi = yi for all i.

(ii) Similarly, |xi − yi| = |yi − xi| for all i, therefore d2(x, y) = d2(x, y).

(iii) In the above proof of well-definedness, we know, by similarity, that
())*

∞'

i=1

|xi + yi|2 ≤

())*
∞'

i=1

|xi|2 +

())*
∞'

i=1

|yi|2

then

d2(x, y) =

())*
∞'

i=1

|xi − yi|2

=

())*
∞'

i=1

|xi − zi + zi − yi|2

≤

())*
∞'

i=1

|xi − zi|2 +

())*
∞'

i=1

|zi − yi|2

= d2(x, z) + d2(z, y)

thus d2 is a metric on l2.

(c) Since x, y ∈ l∞, we know that supi |xi| < ∞ and supi |yi| < ∞. Then

d∞(x, y) = sup
i

|xi − yi| ≤ sup
i

(|xi|+ |yi|) < ∞

hence it is well-defined.

(i) Since |xi − yi| ≥ 0 for all i, supi |xi − yi| ≥ 0. Moreover, xi = yi for all i if and only
if d∞(x, y) = 0.

(ii) |xi − yi| = |yi − xi| for all i, then d∞(x, y) = d∞(y, x).

(iii) |xi − yi| ≤ |xi − zi|+ |zi − yi| for all i, then taking the supremum yields d∞(x, y) ≤
d∞(x, z) + d∞(z, y).

(d) for all x ∈ l1, we have
"∞

i=1 |xi| < ∞, then this means (
"∞

i=1 |xi|)
2 < ∞. Moreover,

"∞
i=1 |xi|2 ≤ (

"∞
i=1 |xi|)

2 < ∞. Thus x ∈ l2. Now that x2 ∈ l2, we must have |xi|2 < ∞
for all i, that is |xi| < ∞ for all i. Thus, supi |xi| < ∞, implies x ∈ l∞.

!
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Q4

Let C1[a, b] = {f ∈ C[a, b] : f is continuously differentiable on [a, b]}.
Define, for all f, g ∈ C1[a, b]

d(f, g) := ‖f − g‖∞ +
//f ′ − g′

//
∞

Show that d is a metric on C1[a, b]. Furthermore, is fk(x) := sin kx
k , k = 1, 2, ... a convergent

sequence in (C1[0, 1], d)?

Solution:
Explicitly,

d(f, g) := ‖f − g‖∞ +
//f ′ − g′

//
∞ = max

x∈[a,b]
|f(x)− g(x)|− max

x∈[a,b]
|f ′(x)− g′(x)|

(i) Since |f(x)− g(x)| ≥ 0 and |f ′(x)− g′(x)| ≥ 0 for all x ∈ [a, b] we have d(f, g) ≥ 0.
Moreover, |f(x)− g(x)| = 0 and |f ′(x)− g′(x)| = 0 for all x ∈ [a, b]

(ii) Since |f(x) − g(x)| = |g(x) − f(x)| and |f ′(x) − g′(x)| = |g′(x) − f ′(x)| for all x ∈ [a, b],
then d(f, g) = d(g, f).

(iii) d(f, g) ≤ d(f, h) + d(h, g) follows from |f(x) − g(x)| ≤ |f(x) − h(x)| + |h(x) − g(x)| and
|f ′(x)− g′(x)| ≤ |f ′(x)− h′(x)|+ |h′(x)− g′(x)| for all x ∈ [a, b] as usual.

Since the above holds for all x ∈ [a, b], it holds for max
x∈[x,b]

|f(x)− g(x)| and max
x∈[a,b]

|f ′(x)− g′(x)|

as well.

Now, we want to show whether fk converges in (C1[0, 1], d). We first observe that fk → 0 as
k → ∞. Then suppose fk converges to 0 in (C1[0, 1], d), then for all ε > 0, there exists a N ∈ N
such that when k ≥ N , we have d(fk, 0) < ε, that is,

max
x∈[0,1]

0000
sin kx

k

0000+ max
x∈[0,1]

|cos kx| < ε

but max
x∈[0,1]

| cos kx| = 1. If we take ε = 1
2 , then we get a contradiction. Thus fk does not converges

in (C1[0, 1], d). !
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Q5

Let (X1, d1) and (X2, d2) be two metric spaces. Define d : (X1 ×X2)× (X1 ×X2) → R by

d(u, v) = d1(x1, y1) + d2(x2, y2)

for all u = (x1, x2) and v = (y1, y2) in X1 ×X2.

(a) Show that d is a metric on X1 ×X2.

(b) Show that if G1 is an open set of (X1, d1) and G2 is an open set of (X2, d2), then G1 ×G2

is an open set of (X1 ×X2, d).

Solution:
d is well-defined since it is defined as the sum of two metric.

(a) Check the axioms:

(i) Since d1(x1, y1) ≥ 0 and d2(x2, y2) ≥ 0 for all x1, y1 ∈ X1 and x2, y2 ∈ X2, then we
have d(u, v) ≥ 0 for all u, v ∈ X1 × X2. For u = v, we have x1 = y1 and x2 = y2,
then d(u, v) = 0 follows from di(xi, yi) = 0 for i = 1, 2.

(ii) Symmetry follows from di(xi, yi) = di(yi, xi) for i = 1, 2.

(iii) Consider u, v, w ∈ X1 ×X2, where u = (x1, x2), v = (y1, y2), w = (z1, z2). We know
that di(xi, yi) ≤ di(xi, zi) + d(zi, yi). Thus,

d(u, v) = d1(x1, y1) + d2(x2, y2)

≤ d1(x1, z1) + d1(z1, y1) + d2(x2, z2) + d2(z2, y2)

= d1(x1, z1) + d2(x2, z2) + d1(z1, y1) + d2(z2, y2)

= d(u,w) + d(w, v)

Thus d is a metric on X1 ×X2.

(b) Our goal is to show for all x = (x1, x2) ∈ G1 × G2, there exists a ε > 0 such that
B(x, ε) ⊂ G1 ×G2.

Since G1 and G2 are open subsets of X1 and X2 respectively, we have

∀x1 ∈ G1, ∃ε1 > 0 such that B1(x1, ε1) ⊂ G

∀x2 ∈ G1, ∃ε2 > 0 such that B2(x2, ε2) ⊂ G

Let ε := min{ε1, ε2}. We want to show that for any x = (x1, x2) ∈ G1 × G2, the ε > 0

chosen satisfies B(x, ε) ⊂ G1 ×G2.

Now pick any y ∈ B(x, ε), we have d(y, x) < ε, that is

d1(x1, y1) + d2(x2, y2) < ε

but this implies d1(xi, yi) < ε ≤ εi for i = 1, 2. So, y1 ∈ G1 and y2 ∈ G2, showing
(y1, y2) ∈ G1 ×G2. Hence, G1 ×G2 is open.

!
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